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Future Directions

Density
Perturbation to density and

Integrable flow field

Kernel density estimate of 
perturbation from particles

Kernelized Stein Discrepancy between 
particles and perturbed density

Normalizing flows [1]: represent a probability distribution with an 
invertible transformation of a base distribution to a target distribution

Neural ODEs [2]: represent the invertible transformation as an ODE

(also appears in Stein operator, Fokker-Planck equation, and continuity 
equation for conservation of mass)

Typically, we know initial p0(x) and final samples x(T), and solve for v 
by maximum likelihood. What if instead, we knew p(x) and infinitesimal 
change dp(x)/dt? How would we solve for v then?

Applications: Accelerating convergence when 
sampling and optimization are coupled:

● Variational Quantum Monte Carlo
○ f=energy, p=wavefunction

● Policy Gradient Methods
○ f=value, p=policy

● Variational Inference
○ f=ELBO, p=variational posterior

Scaling: How to beat the curse of dimensionality
● How do we get around the need for the 

partition function when we only have an 
unnormalized distribution?

● How do we get around the rn-1 dropoff in field 
strength in high dimensions?

Mixture of Gaussians in 2D:
● 10k samples, perturb the means
● Evaluate with kernelized Stein discrepancy [5, 6]
● Flow-perturbed samples closely match 

perturbed density across a range of scales

v is underdetermined - restrict pv to 
be integrable

Then can solve Poisson equation

Equivalent to treating pv as electric field created by particles with 
charge dp(x)/dt. Can be solved empirically by Coulomb kernel:

Unlike Stein variational gradient descent [3] there is only one possible 
kernel, which is known to be optimal for related applications [4]. https://tinyurl.com/integrable-flows


