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A Brief History of Monte Carlo Methods

➢ Developed by Ulam, Von Neumann and Metropolis at Los 
Alamos in the ‘40s

➢ Published in "Equations of state calculations by fast 
computing machines" (1953) by Metropolis, Rosenbluth, 
Rosenbluth, Teller and Teller

➢ Major application of some of the first computing 
machines - ENIAC, MANIAC

➢ Wide variety of computational physics applications:
○ Neutron diffusion
○ Equations of state in statistical mechanics
○ Many-body quantum physics: W. L. McMillan, 

“Ground state of liquid He4” (1965)
○ Lattice QCD: S. Duane et al. (1987) - Origin of HMC!

➢ Often adopted later in statistic and ML:
○ Metropolis-Hastings: W. K. Hastings (1970)
○ Gibbs sampling: S. Geman and D. Geman (1984)
○ HMC: R. Neal (1996)

MetropolisUlam
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Rosenbluth, Teller and Teller

➢ Major application of some of the first computing 
machines - ENIAC, MANIAC

➢ Wide variety of computational physics applications:
○ Neutron diffusion
○ Equations of state in statistical mechanics
○ Many-body quantum physics: W. L. McMillan, 

“Ground state of liquid He4” (1965)
○ Lattice QCD: S. Duane et al. (1987) - Origin of HMC!

➢ Often adopted later in statistic and ML:
○ Metropolis-Hastings: W. K. Hastings (1970)
○ Gibbs sampling: S. Geman and D. Geman (1984)
○ HMC: R. Neal (1996)

➢ Now is the time for ideas from ML to instead feed  back 
into computational physics

MetropolisUlam

Von Neumann Hastings



QMC: Quasi Monte Carlo
QUANTUM



Quantum Mechanics and the Schrödinger Equation

Chemical Reactions Electronic properties of materials Exotic states of matter

Paul Dirac

The underlying physical laws necessary for the mathematical theory of a 
large part of physics and the whole of chemistry are thus completely 
known, and the difficulty is only that the exact application of these laws 
leads to equations much too complicated to be soluble.



Quantum Mechanics and the Schrödinger Equation

Kinetic Energy Electron-Ion Potential Electron-Electron Potential Ion-Ion Potential

➢ H is a linear operator on 3N-dimensional functions Ψ for a system of N particles
➢ Ψ is a function such that Ψ2 is a probability density function
➢ Eigenfunctions of H represent states of constant energy - the lowest energy state is the ground 

state
➢ Can be solved exactly for hydrogen - and nothing else!
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Quantum Monte Carlo

➢ Solve for ground state energy by Monte 
Carlo

➢ Originally used just to evaluate integrals 
for liquid helium: W. L. McMillan (1965)

➢ Extended to fermions = electrons = 
chemical and material systems:             
D. Ceperley, G. V. Chester and M. H. 
Kalos (1977)

➢ Comes in two (main) flavors:
○ Variational QMC - directly 

minimize the upper bound
○ Diffusion QMC - simulate 

particles undergoing diffusion, 
update weights based on potential 
energy

➢ Diffusion QMC is generally more 
accurate, and can be interpreted as 
particle filtering, where potential 
energy = log likelihood

➢ This talk is focused on variational QMC



Private & Confidential

Mean-field (~99.5%)

Correlation energy

1 kCal/mol, ~99% of the correlation energy

“Chemical Accuracy”

➢ To be useful to chemists, the standard benchmark is “chemical accuracy” or 1 kCal/mol
➢ This is a tiny fraction of the total energy - something like 99.995% accuracy
➢ Mean field methods already capture ~99.5% of the total energy - need 99% of the remainder



How do we approximate a 
wavefunction?



Wavefunctions for 
electrons must be 

antisymmetric



Slater Determinant

➢ Minimum energy solution gives mean-field 
or “Hartree-Fock” solution for ground state



Slater Determinant
Jastrow Factor

➢ Adds correlation between electrons at the output
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Backflow Transform



➢ Build a larger linear basis of antisymmetric functions
➢ Often requires thousands or millions to converge
➢ Classic Slater-Jastrow-Backflow wavefunction:            

Y. Kwon, D. Ceperley and R. M. Martin (1993)
➢ Can we improve on this with modern function 

approximation from machine learning?

Backflow Transform
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Neural networks are 
excellent  function 

approximators

Object Recognition Game Playing
This is a story about Nell (short 
for Penelope), a 12-year old girl 
who lives in a planet called New 
Texas. She and her whole family 
lives with another family in a 
settlement with few houses, called a 
soddy. One day Nell has a weird 
dream that a storm is coming. When 
she wakes up she discovers that she 
is not crazy, it is really a storm 
coming. The storm is about to 
destroy the settlement. Nell and her 
younger brother Cip run away from 
the house to look for shelter. They 

Language

A. Krizhevsky, I. Sutskever and G. Hinton (2012) D. Silver, A. Huang, C. Maddison et al. (2016) T. B. Brown, B. Mann, N. Ryder et al. (2020)
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Why not a wavefunction?

How do we build an 
antisymmetric            

neural network?



➢ Orbital invariant under change of order of 
electrons other than i

➢ Determinant remains antisymmetric
➢ Can capture many-electron interactions directly 

in the orbital

How to represent these permutation-equivariant 
functions?

Fermionic Neural Network

Key idea: extend function of one electron to be functions of all electrons, 
but not change under permutation of other electrons
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Fermionic Neural Network

➢ Just sum the activation vectors from other streams together and add them 
as inputs to the next layer

➢ Simple, but universal in theory: M. Hutter arXiv:2007.15298 (2020)



Fermionic Neural Network

➢ In practice, need to add a second stream with pairs of electron features, 
and have a sum of a small number of determinants (a few dozen)



➢ Nothing fancy - just conventional 
Metropolis-Hastings

➢ Gibbs sampling/One-electron moves are often 
used, but not needed for small systems

➢ Interaction between optimization and sampling is 
very subtle

○ Gradient-based methods (HMC, MALA) are 
actually much noisier

○ Often smaller steps, slower mixing leads to 
faster convergence (?!?)

○ Promising topic for deeper theoretical work

Implementation: MCMC



Implementation: Custom Derivatives

➢ Have to compute lots of derivatives and second derivatives of determinants
➢ Singular matrices are a problem - conventional AD packages blow up
➢ Can implement custom derivatives by taking matrix inverse and determinant from SVD and 

canceling terms
➢ Couldn’t have done it without An extended collection of matrix derivative results...



Implementation:  Kronecker-Factored Approximate Curvature

Natural gradient descent S.-I. Amari (1998)

Equivalent to stochastic reconfiguration (S. Sorella (1998)) with unnormalised probability densities

KFAC Approximates Fisher information matrix: J. Martens and R. Grosse (2015)



Results



Single determinant

Backflow captures large 
fraction of remaining 
correlation energy.

VMC: P. Seth, P. L. Ríos, and R. J. Needs, J. Chem. Phys. 134, 084105 (2011).

Exact: Chakravorty et al. Phys. Rev. A 47, 3649 (1993).
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VMC, DMC: P. Seth, P. L. Ríos, and R. J. Needs, J. Chem. Phys. 134, 084105 (2011).

Exact: Chakravorty et al. Phys. Rev. A 47, 3649 (1993).

Backflow captures large 
fraction of remaining 
correlation energy.

Neural networks offer more 
flexible functional forms.

Fermi Net substantially reduces 
the error.



Multiple determinants

Fermi Net converges rapidly with number of determinants

Substantially easier to optimize than Slater-Jastrow and Slater-Jastrow-Backflow networks!



Ground state atoms

Fermi Net: 16 determinants.

VMC, DMC: 50-100 
configuration state functions. 
SJB wavefunction.

Fermi Net outperforms 
conventional VMC and DMC.

Consistently captures 99.7% 
correlation energy.

VMC, DMC: P. Seth, P. L. Ríos, and R. J. Needs, J. Chem. Phys. 134, 084105 (2011).

Exact: Chakravorty et al. Phys. Rev. A 47, 3649 (1993).



Private & Confidential

Mean-field (~99.5%)

Correlation energy

99.95(1)% 99.45(1)% 99.66(3)% 99.56(2)% 99.38(2)% 99.16(2)% 96.94(5)%

Molecules



Fermi Net outperforms 
CCSD(T) in QZ, 5Z basis 
sets.

Accuracy degradation with 
# of electrons.

➢ Fixed network 
configuration

➢ Parameter 
optimization?

➢ Monte Carlo 
improvements?

Molecules



H10

Lower energies than 
conventional VMC and 
coupled cluster.

Competitive with 
AFQMC.

Data:
M. Motta et al., PRX, 
031059 (2017).



Network ablation: H10

MRCI+Q+F12: Motta et al., PRX, 031059 (2017).

Suggests that wider network may be the key to improving accuracy



Private & ConfidentialRange of ideas and approaches...

c.e. - correlation energy
M. Ruggeri, S. Moroni, M. Holzmann, PRL 120, 205302 (2018): Iterative neural network backflow for 3He.
J. Han, L. Zhang and W. E, JCP 399, 108929 (2019): Simpler architecture, worse than mean-field results

Systems Parameterization Optimization Accuracy

NNB: Luo, Clark
PRL 122 226401 
(2019)

Hubbard model Backflow first-order Surpasses conventional 
backflow

PauliNet: Hermann, 
Schätzle, Noé, 
arXiv:1909:08423

Molecules,
continuum

Jastrow and backflow ADAM Boron: 97.3% c.e.
H10: 90-98% c.e.

NQS: Choo, 
Mezzacapo, Carleo, 
Nat Commun. 11 
2360 (2020)

Molecules,
second 
quantization

Map to spin problem 
+ restricted 
Boltzmann machine

Stochastic 
reconfiguration

<1mH error compared 
to FCI in STO-3G.

Fermi Net Molecules, 
continuum

Everything KFAC Boron: 99.8% c.e.
H10: 98.5-99.3% c.e.



Fermionic Neural Network

➢ Structured neural network for quantum 
wavefunctions

➢ Powerful scalable second-order 
optimization

➢ Optimization and sampling interact in 
counterintuitive ways

➢ Accurate ground state energies with 
only physically motivated inputs

➢ Neural networks provide flexible and 
compact representations of complex 
high-dimensional functions

Conclusions



Thank you
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