Disentangling by Subspace Diffusion

Background and Motivation

Can we learn to disentangle independent factors of variation in the world, e.g.

pose, illumination, etc [Bengio et al 2013]?

Probabilistic disentangling [Locatello et al. 2019]:

Latent vectors are sampled from a product of independent distributions. A
representation is disentangled if it correctly recovers the statistically
independent latent factors.

Pessimistic result - disentangled directions are not identifiable without some
prior knowledge [Hyvarinen and Pajunen 1999]

Symmetry-based or Geometric disentangling [Higgins et al. 2018]:

Latent vectors are generated by a product of group actions. A
representation is disentangled if the representation space can be partitioned
into subspaces that are invariant to all group actions except one.
Optimistic definition - not yet known under what conditions it is possible,
largely novel research direction.
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Elevator summary:

Fully unsupervised symmetry-based disentangling is possible
if we have access to true metric information.
We develop an algorithm that achieves this:

the Geometric Manifold Component Estimator (GEOMANCER)
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Analogical Reasoning on Curved Manifolds
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(a) On curved manifolds, analogical reasoning breaks down because group
actions do not commute.
(b) On a product of curved manifolds, analogical reasoning is possible only
along certain dimensions.

The noncommutativity of certain operations is used as a learning signal to
find disentangled directions on a data manifold.

Code: tinyurl.com/dm-geomancer
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Holonomy and the de Rham decomposition

Tangent space: local vector space T M
T

v0M  around point x

Connection: defines how the vector v
changes when moved in the direction w
Parallel transport: sequence of vectors
v(t) moved along the path y(t)
Holonomy: Matrix Hv that gives change to

’Y a vector transported around the loop vy
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Tangent space decomposes into 5 Manifold factorizes into

subspaces left invariant by holonomy < product of submanifolds

Method

Subspace Diffusion

(trivial)

Compute subspaces that are nearly invariant under random walk diffusion

Scalar Laplacian [Belkin and Niyogi 2003]

Alfls = fi—f;

Vector Laplacian [Singer and Wu 2012]

AV =D vi—QLv,

Matrix Laplacian

Generalizes Laplacian Eigenmaps and Vector Diffusion Maps to matrices
and subspaces, but for an entirely novel application

Post-processing: alighing subspaces
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Take the eigenvectors of the matrix Laplacian, reshape into set of matrices,
simultaneously diagonalize matrices around each point, and partition tangent
space around each point into a set of orthogonal subspaces.

Data: tinyurl.com/dm-s304d
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Stanford 3D Objects for Disentangling (S304D)
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100k renderings for each object from the Stanford 3D Scanning Repository
with uniformly sampled illumination (S?) and pose (SO(3))

e Metric information is necessary - GEOMANCER fails on pixels
e Metric information is sufficient - GEOMANCER works on embeddings
e Existing disentangling algorithms are insufficient - B-VAE fails on pixels
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