
Disentangling by Subspace Diffusion

Background and Motivation

Can we learn to disentangle independent factors of variation in the world, e.g. 
pose, illumination, etc [Bengio et al 2013]?

Probabilistic disentangling [Locatello et al. 2019]:
Latent vectors are sampled from a product of independent distributions. A 
representation is disentangled if it correctly recovers the statistically 
independent latent factors.
Pessimistic result - disentangled directions are not identifiable without some 
prior knowledge [Hyvarinen and Pajunen 1999]

Symmetry-based or Geometric disentangling [Higgins et al. 2018]:
Latent vectors are generated by a product of group actions. A 
representation is disentangled if the representation space can be partitioned 
into subspaces that are invariant to all group actions except one.
Optimistic definition - not yet known under what conditions it is possible, 
largely novel research direction.

(a) On curved manifolds, analogical reasoning breaks down because group 
actions do not commute. 
(b) On a product of curved manifolds, analogical reasoning is possible only 
along certain dimensions.

The noncommutativity of certain operations is used as a learning signal to 
find disentangled directions on a data manifold.

Method

Holonomy and the de Rham decomposition

Analogical Reasoning on Curved Manifolds

Results
Synthetic Manifolds
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Stanford 3D Objects for Disentangling (S3O4D)

Subspace Diffusion

Post-processing: aligning subspaces

Scalar Laplacian [Belkin and Niyogi 2003]

Vector Laplacian [Singer and Wu 2012]

Matrix Laplacian

Compute subspaces that are nearly invariant under random walk diffusion 

Generalizes Laplacian Eigenmaps and Vector Diffusion Maps to matrices 
and subspaces, but for an entirely novel application

Take the eigenvectors of the matrix Laplacian, reshape into set of matrices, 
simultaneously diagonalize matrices around each point, and partition tangent 
space around each point into a set of orthogonal subspaces.

Tangent space: local vector space TxM 
around point x
Connection: defines how the vector v 
changes when moved in the direction w
Parallel transport: sequence of vectors 
v(t) moved along the path γ(t)
Holonomy: Matrix Hγ that gives change to 
a vector transported around the loop γ

Tangent space decomposes into 
subspaces left invariant by holonomy

Manifold factorizes into 
product of submanifolds

(trivial)
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100k renderings for each object from the Stanford 3D Scanning Repository 
with uniformly sampled illumination (S2) and pose (SO(3))
● Metric information is necessary - GEOMANCER fails on pixels
● Metric information is sufficient - GEOMANCER works on embeddings
● Existing disentangling algorithms are insufficient - β-VAE fails on pixels

Arbitrary product of up to 5 submanifolds 
(spheres and rotations)
● Correctly recovers # of manifolds
● Correctly recovers decomposition of 

subspaces
● Performance jumps above chance 

quickly past a critical threshold in 
number of training examples
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Elevator summary:
Fully unsupervised symmetry-based disentangling is possible 
if we have access to true metric information.
We develop an algorithm that achieves this:

the Geometric Manifold Component Estimator (GEOMANCER) 

https://arxiv.org/abs/1812.02230

