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Definition 0.1 (Bregman Divergence). Let F' : S — R be a strictly convez differentiable
function, then the Bregman Divergence derived from F' is a function Dp : S x S — R4
defined as

Dplz|ly] £ F(z) = F(y) = (VF(y),z — y).
Lemma 0.1 (Minimum Expected Bregman Divergence). Let F' : S — R be a strictly convex

differentiable function, and X be a random variable on S. Then x* = arg min, E[Dp[z|| X]] &
VF(z*) =E[VF(X)] and E[X] = argmin, E[Dr[X]||z]].

Proof. A necessary condition for * to minimize the expected divergence is that its gradient
should be zero. The gradient of the expected Bregman divergence when the expectation is
taken over the second argument is given by
V.EDrX]] = V.E[F(2) — F(X) — (VF(X),2 - X)]
— VF(2) - VL(E[VF(X)], 2)
= VF(z)—E[VF(X)]=0
= VF(z) =E[VF(X)]
by the linearity of expectations and the independence of z from X. Since F is convex, if
an x* exists that satisfies this condition then it is unique, and therefore the minimum.
When the expectation is taken over the first argument, the gradient is then
VAE[DpX|lz]] = V:E[F(X)—-F(z) = (VF(2),X —2)]
= —VF(z) = V(VF(2),E[X]) + V(VF(z),2)
= —VF(2) - V2F(2)E[X] + V2F(2)z + VF(z)
= —V2F(2)E[X]+ V2F(2)z =0
— V?F(2)z = V?F(2)E[X]
— z=E[X]
where the last step follow from the fact that the Hessian of a strictly convex function is
positive definite and therefore invertible. O



Theorem 0.1 (Decomposition of Expected Bregman Divergence). Let ' : § — R be a
strictly convex differentiable function, and X be a random wvariable on S. Then for any
point s € S, the expected Bregman divergences have the following exact decomposition:
E[Dp[s||X]] = Dpls||z*] + E[Dplz*|| X]], where 2* = arg min, E[Dp[z|| X]]

E[Dr[X]||s]] = Dr[z*||s] + E[Dp[X]||z*]], where 2* = argmin, E[Dp[X||z]] = E[X].

Proof.

Dp[s|la*] + E[Dp["||X]] = F(s) = F(z") = (VF(z"),s — a")
+E[F(z*) — F(X) — (VF(X), 2" — X)]
= F(s)— (E[VF(X)],s —z")
+E[-F(X) - (VF(X),z* — X)]
F(s) - F(X)
- F(X)

—

= E| —(VF(X),s —z" + 2" — X)]
= E[F(s)— F(X)— (VF(X),s — X)]
— E[Dpls]|X]]

Dp[E[X][[s] + E[Dp[X[E[X]]] = F(E[X]) = F(s) = (VF(s), E[X] - 5)

Dp[X]|s]

Suppose we wish to predict some random variable Y € S that is dependent on another
variable X € R. We are given a training set D = {{z1,y1},...,{Zn,yn}} of input/output
pairs sampled iid from the joint distribution of X and Y, and have an algorithm that
learns a deterministic prediction function from the data fp : R — &. If the loss func-
tion for evaluating the quality of prediction is the Bregman divergence derived from F’,
L(y, fp(z)) = Drly||fp(x)] then the expected loss can be decomposed exactly.

Theorem 0.2 (Generalized Bias-Variance Decomposition). Let F' : & — R be a strictly
convex differentiable function, fp : R — S be the prediction function trained on data
D = {{z1,11},. ..., {xn,yn}}, and Y be the random variable we are trying to predict from
X. Then the expected Bregman divergence of the data obeys a generalized bias-variance
decomposition:

Epy[Dr[Y|[fp(X)]] = Ey[Dr[Y][f(X)]]
+Dp(f*(X)]1F(X)]
+Ep[Dp[f(X)|lfp(X)]]



where f*(X) = argmin, Ey[Dp[Y||2]] = Ey[Y], f(X) = argmin, Ep[Dr[z||fp(X)]], and
all expectations are implicitly conditioned on X.

Proof. The proof is a straightforward consequence of Theorem 0.1.

Epy[Dr[Y||fp(X

)]]

= Ep[Ey[Dp[Y][fp(X)]|D]]

[
Ep[Ey [Dp[Y[[f*(X)][D] + Dp[f*(X)[|fp(X)]]
Ey [De[Y|]f*(X)]] ED[DF[ “(X)Ifp(X)]]
Ey [Dp[Y[[f* (X)) + Drlf*(X)IF(X)] + Eplf(X)]]fp(X)]

++

O



