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Definition 0.1 (Bregman Divergence). Let F : S → R be a strictly convex differentiable
function, then the Bregman Divergence derived from F is a function DF : S × S → R+

defined as
DF [x||y] , F (x)− F (y)− 〈∇F (y), x− y〉.

Lemma 0.1 (Minimum Expected Bregman Divergence). Let F : S → R be a strictly convex
differentiable function, and X be a random variable on S. Then x∗ = arg minz E[DF [z||X]]⇔
∇F (x∗) = E[∇F (X)] and E[X] = arg minz E[DF [X||z]].

Proof. A necessary condition for x∗ to minimize the expected divergence is that its gradient
should be zero. The gradient of the expected Bregman divergence when the expectation is
taken over the second argument is given by

∇zE[DF [z||X]] = ∇zE[F (z)− F (X)− 〈∇F (X), z −X〉]
= ∇F (z)−∇z〈E[∇F (X)], z〉
= ∇F (z)− E[∇F (X)] = 0

⇒ ∇F (z) = E[∇F (X)]

by the linearity of expectations and the independence of z from X. Since F is convex, if
an x∗ exists that satisfies this condition then it is unique, and therefore the minimum.

When the expectation is taken over the first argument, the gradient is then

∇zE[DF [X||z]] = ∇zE[F (X)− F (z)− 〈∇F (z), X − z〉]
= −∇F (z)−∇〈∇F (z),E[X]〉+∇〈∇F (z), z〉
= −∇F (z)−∇2F (z)E[X] +∇2F (z)z +∇F (z)

= −∇2F (z)E[X] +∇2F (z)z = 0

→ ∇2F (z)z = ∇2F (z)E[X]

→ z = E[X]

where the last step follow from the fact that the Hessian of a strictly convex function is
positive definite and therefore invertible.

1



Theorem 0.1 (Decomposition of Expected Bregman Divergence). Let F : S → R be a
strictly convex differentiable function, and X be a random variable on S. Then for any
point s ∈ S, the expected Bregman divergences have the following exact decomposition:
E[DF [s||X]] = DF [s||x∗] + E[DF [x∗||X]], where x∗ = arg minz E[DF [z||X]]
E[DF [X||s]] = DF [x∗||s] + E[DF [X||x∗]], where x∗ = arg minz E[DF [X||z]] = E[X].

Proof.

DF [s||x∗] + E[DF [x∗||X]] = F (s)− F (x∗)− 〈∇F (x∗), s− x∗〉
+E[F (x∗)− F (X)− 〈∇F (X), x∗ −X〉]

= F (s)− 〈E[∇F (X)], s− x∗〉
+E[−F (X)− 〈∇F (X), x∗ −X〉]

= E[F (s)− F (X)− 〈∇F (X), s− x∗ + x∗ −X〉]
= E[F (s)− F (X)− 〈∇F (X), s−X〉]
= E[DF [s||X]]

DF [E[X]||s] + E[DF [X||E[X]]] = F (E[X])− F (s)− 〈∇F (s),E[X]− s〉
+E[F (X)− F (E[X])− 〈∇F (E[X]), X − E[X]〉]

= −F (s)− 〈∇F (s),E[X]− s〉
+E[F (X)]− 〈∇F (E[X]),E[X]− E[X]〉

= E[F (X)− F (s)− 〈∇F (s), X − s〉]
= E[DF [X||s]]

Suppose we wish to predict some random variable Y ∈ S that is dependent on another
variable X ∈ R. We are given a training set D = {{x1, y1}, . . . , {xn, yn}} of input/output
pairs sampled iid from the joint distribution of X and Y , and have an algorithm that
learns a deterministic prediction function from the data fD : R → S. If the loss func-
tion for evaluating the quality of prediction is the Bregman divergence derived from F ,
L(y, fD(x)) = DF [y||fD(x)] then the expected loss can be decomposed exactly.

Theorem 0.2 (Generalized Bias-Variance Decomposition). Let F : S → R be a strictly
convex differentiable function, fD : R → S be the prediction function trained on data
D = {{x1, y1}, . . . , {xn, yn}}, and Y be the random variable we are trying to predict from
X. Then the expected Bregman divergence of the data obeys a generalized bias-variance
decomposition:

ED,Y [DF [Y ||fD(X)]] = EY [DF [Y ||f∗(X)]]

+DF [f∗(X)||f̄(X)]

+ED[DF [f̄(X)||fD(X)]]
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where f∗(X) = arg minz EY [DF [Y ||z]] = EY [Y ], f̄(X) = arg minz ED[DF [z||fD(X)]], and
all expectations are implicitly conditioned on X.

Proof. The proof is a straightforward consequence of Theorem 0.1.

ED,Y [DF [Y ||fD(X)]] = ED[EY [DF [Y ||fD(X)]|D]]

= ED[EY [DF [Y ||f∗(X)]|D] + DF [f∗(X)||fD(X)]]

= EY [DF [Y ||f∗(X)]] + ED[DF [f∗(X)||fD(X)]]

= EY [DF [Y ||f∗(X)]] + DF [f∗(X)||f̄(X)] + ED[f̄(X)||fD(X)]
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